

SEW Brakes

Service and Maintenance

Objectives

- Upon completion of this presentation, you will be able to accomplish the following –
 - Describe the purpose of the SEW brake
 - Explain the operation of the SEW brake
 - Identify the components of an SEW brake
 - Apply basic troubleshooting procedures

Brake Purpose

To Stop Motion

- The brake engages when power is removed from the motor
- The brake applies force to an object in motion until friction either slows or stops the motion
- Motor slows and finally stops

To Prevent Motion

- Brake engages after motor has come to complete stop
- Brake merely holds motor to prevent rotation.

Brake Features

- SEW Brake Features
 - Fail-safe operation
 - Rectifier for conversion of AC into DC current
 - DC controlled brake coil

Fail-safe operation refers to the brake preventing rotation of the motor despite loss of power

The coil functions like an electro magnet when energized

De-energized

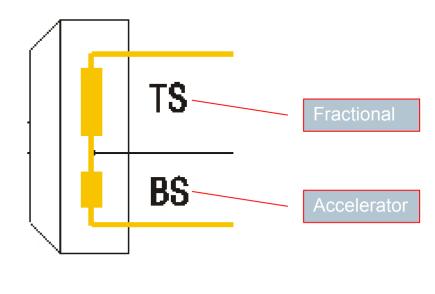
When the coil is de-energized, the springs apply force to the stationary plate.

This force presses against the brake disc to create friction.

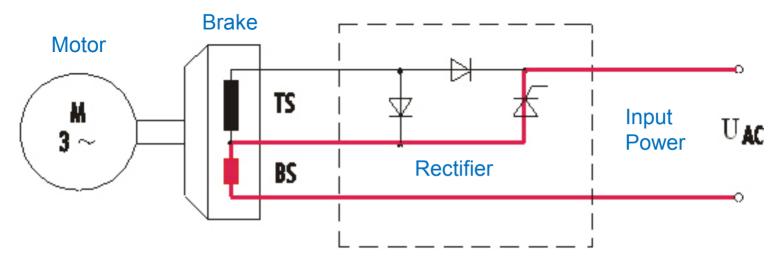
Friction stops the motor and/or prevents it from rotating.

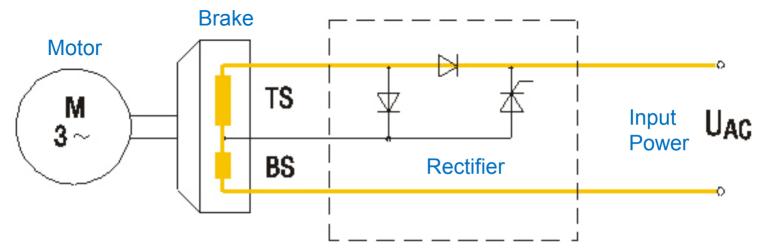
Energized


When the coil is energized, its magnetic field pulls the plate towards the coil.

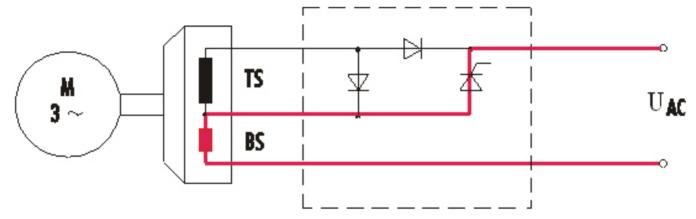

The magnetic force compresses the springs.

The motor can now rotate freely.

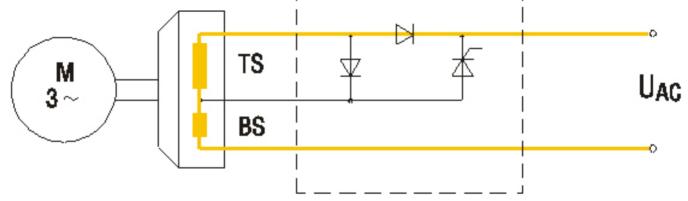

- The brake coil consists of two separate parts
 - 1. Accelerator coil (BS)
 - 2. Fractional holding coil (TS)



- Step 1 The rectifier energizes the Accelerator (BS) coil very quickly due to its low resistance
 - Low resistance = High current
 - High current = Strong electromagnetism
 - Strong electromagnetism = Fast reaction



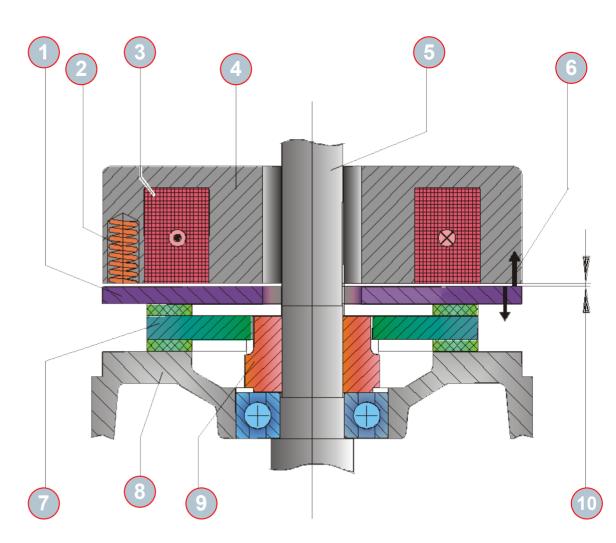
- Step 2 After 120 ms, the rectifier energizes both coils. The combined coils have a higher resistance, allowing the coils to deenergize faster when the power is removed
 - High resistance = Low current
 - Low current = Weak electromagnetism
 - Weak electromagnetism = Quick coil collapse



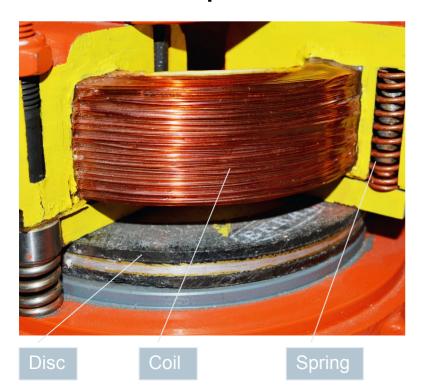
Step 1

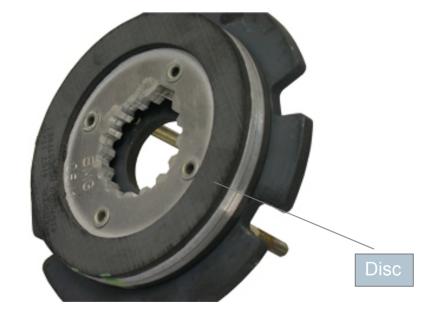
Step 2 – 120ms

Starting


- 1. The rectifier energizes the brake coil
- 2. The brake coil attracts the stationary disc, removing pressure between the stationary disc and brake disc
- 3. Motor rotates freely

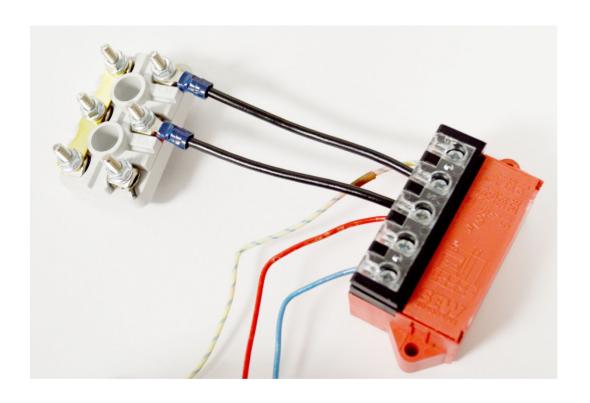
Stopping


- 1. Rectifier de-energizes the brake coil
- 2. Brake springs create pressure between stationary disc and brake disc
- 3. Friction stops the motor and prevents it from rotating



- 1. Pressure plate
- 2. Brake spring
- 3. Magnet (Coil)
- 4. Coil body
- 5. Motor rotor shaft
- 6. Dampening plate
- 7. Brake disc
- 8. Friction disc
- Brake carrier
- 10. Brake air gap

Rectifiers and relays that mount in Motor Conduit Box

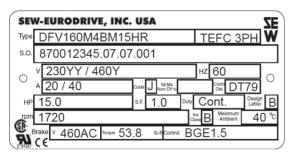


Rectifiers that mount in Control Panel

Typical brake wiring configuration

Troubleshooting SEW brakes

Always follow the proper lockout/tagout procedures



Always use the proper safety equipment and PPE



- Resources needed
 - Nameplate data from motor
 - Motor/Brakemotor operating instructions
 - Motor/Brakemotor parts list
 - Digital multi-meter
 - Metric nutdrivers
 - Metric feeler gauge

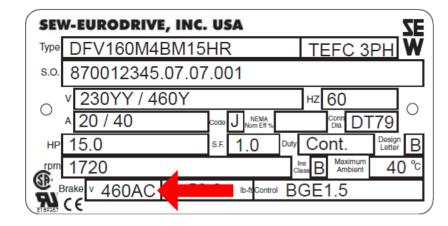
Common faults

- Rectifier is damaged.
- Rectifier is wired incorrectly.
- AC brake voltage is incorrect or not applied.
- Brake coil is damaged or malfunctioning.
- Brake is mechanically locked.
- Air gap is outside of tolerance.
- Brake disc is worn or damaged.

Troubleshooting - Rectifier

- Damaged rectifier
 - Incorrect voltage or wiring causes internal damage to rectifier
 - Check the rectifier in a de-energized state using the diode checker on your digital multi-meter
 - All power to diode must be OFF. Diode should be isolated from other components (all wires disconnected!)
 - Multi-meter must be in → (diode checker mode) with the meter's black lead in the COM jack and the meter's red lead in the ↓v Ω→ jack.
 - See chart on following page

Troubleshooting - Rectifier

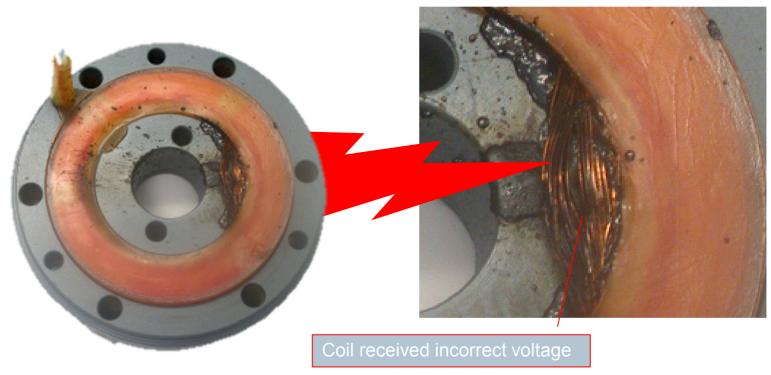

Brake Rectifier Diode Check Chart

Туре	Black Lead to Terminal	Red Lead to Terminal	Good Reading		
BGE 1.5 / 3.0	1	5	≈ 0.5 V dc		
	2	5	≈ 2.9 V dc		
BG 1.5 / 3.0	1	5	≈ 0.5 V dc		
	2	5	≈ 0.5 V dc		
BSG	2	5	≈ 0.2 V dc		
	4	5	≈ 0.7 V dc		
	4	1	≈ 0.5 V dc		
	4	2	≈ 0.5 V dc		
BMK	3	4	≈ 1.8 V dc		
	1	13	0.0 V dc		
BME 1.5 / 3.0	2	3	≈ 2.9 V dc		
	13	1	0.0 V dc		
	14	3	≈ 0.5 V dc		
	15	4	0.0 V dc		

Troubleshooting - Wiring

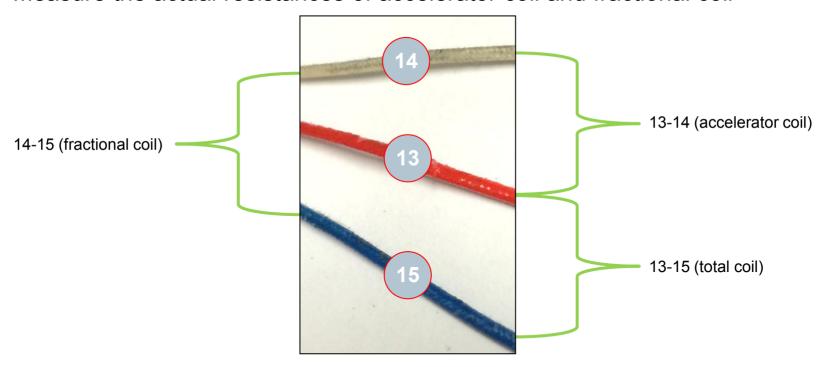
- Incorrect wiring
 - Refer to wiring diagram paperwork supplied with motor
 - Verify proper wiring using the sticker supplied with motor conduit box lid
 - Refer to the motor nameplate for the correct brake voltage

Troubleshooting - Wiring


- Check voltage at brake contactor
 - If rectifier power does not come from motor terminals, measure the voltage at the brake contactor

- Check the activation of the brake contactor.
 - Verify that the brake contactor functions properly and changes position when energized

Troubleshooting - Coil


- Brake coil is damaged or malfunctioning
 - Wrong voltage applied to brake coil causes internal and external damage

Troubleshooting - Coil

Measure the actual resistances of accelerator coil and fractional coil

Accelerator coil winding resistance Fractional coil winding resistance Total coil winding resistance

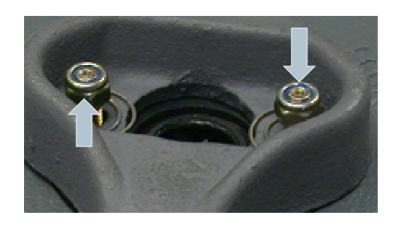
- = $\frac{1}{4}$ of winding resistance
- = $\frac{3}{4}$ of winding resistance
- = sum of accelerator and holding coil resistance

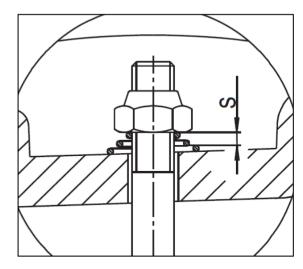
Troubleshooting - Coil

Brake Coil Resistance Values

Nominal voltage	e V _N	BE05 BE1	/	BE2		BE5		BE11		BE20		BE30 BE32	/	BE60 BE62	/	BE120 BE122	
V _{AC}	V _{DC}	R _B	R_T	R _B	R _T	R_B	R _T	R _B	R _T								
24 (23-26)	10	0.77	2.35	0.57	1.74	-	-	-	-	-	-	-	-	-	-	-	-
60 (57-63)	24	4.85	14.8	3.60	11.0	2.20	10.5	1.20	7.6	1.1	7.1	-	-	-	-	-	-
120 (111-123)	48	19.4	59.0	14.4	44.0	8.70	42.0	4.75	30.5	3.3	28.6	2.1	15.8	-	-	-	-
147 (139-159)	60	31.0	94.0	23.0	69.0	13.8	66	7.7	43.5	5.4	36.0	3.7	27.5	-	-	-	-
184 (174-193)	80	48.5	148	36.0	111	22.0	105	12.0	76.0	8.4	57	5.3	39.8	-	-	-	-
208 (194-217)	90	61.0	187	45.5	139	27.5	132	15.1	96	10.6	71.7	6.7	50	3.95	32.5	-	-
230 (218-243)	96	78.0	235	58.0	174	34.5	166	19.0	121	13.3	90.3	8.4	63	5.0	41.0	8.0	29.9
254 (244-273)	110	97.0	295	72.0	220	43.5	210	24.0	152	16.7	134	10.6	79.3	6.3	52.0	10.1	37.2
290 (274-306)	125	122	370	91	275	55.0	265	30.0	191	21.1	143	13.3	100	5.6	64.0	12.7	47.4
330 (307-343)	140	154	470	115	350	69.0	330	38.0	240	26.5	180	16.8	126	9.9	80.0	20.1	75.1
360 (344-379)	160	194	590	144	440	87.0	420	47.5	305	33.4	227	21.1	158	12.6	101	-	-
400 (380-431)	180	245	740	182	550	110	530	60	380	42.1	286	26.6	199	15.8	128	25.3	94.6
460 (432-484)	200	310	940	230	690	138	660	76	480	52.9	360	33.4	251	19.9	163	31.8	119
500 (485-542)	220	385	1180	290	870	174	830	95	600	66.7	453	42.1	316	25.5	205	40.1	150
575 (543-600)	250	490	1480	365	1100	220	1050	120	760	83.9	570	53.0	398	31.5	260	50.5	189

 R_B accelerator coil resistance at 68°F in Ω R_T coil section resistance at 68°F in Ω

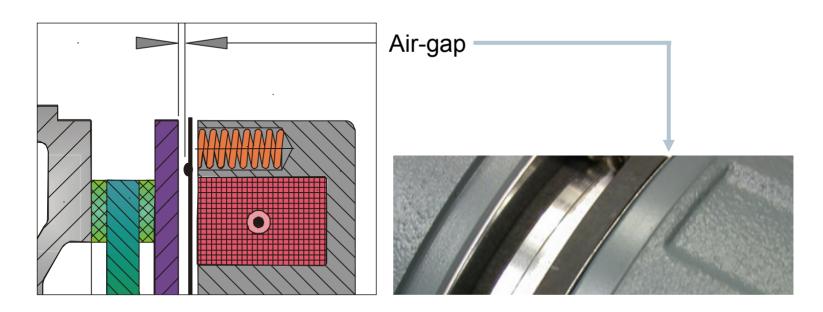

V_N nominal voltage (nominal voltage range)



Troubleshooting - Hand Release

- Brake is mechanically locked
 - Verify the free play on the release arm
 - Adjust the locking nuts to achieve the correct floating clearance

Brake	Floating clearance s [mm]
BE05, BE1, BE2, BE5	1.5
BE11, BE20, BE30/32, BE60/62, BE120/122	2


Caution!

There must always be clearance on the lever. Note: The brake release mechanism is <u>not</u> used to change the brake's torque setting.

Troubleshooting – Air Gap

- Out of tolerance brake air gap
 - Too much air gap and the brake will not engage
 - Insufficient air gap and the brake will not release

Troubleshooting – Air Gap

Obtain correct value for air gap

Brake type	Working air	gap – in / [mm]
-	Min.	Max.
BE05/BE1/BE2	.01 / [0.25]	.024 / [0.60]
BE5	.01 / [0.25]	.035 / [0.90]
BE11/BE20/BE30/BE60	.012 / [0.30]	.047 / [1.20]
BE32/BE62	.016 / [0.40]	.047 / [1.20]
BE120	.024 / [0.60]	.047 / [1.20]
BE122	.031 / [0.80]	.047 / [1.20]

Look up the correct values in the SEW Motor Operating Instructions

Troubleshooting - Air Gap

- Adjustment Method 1
 - Insert feeler gauge (minimum value set) between dampening plate and coil or between pressure plate and coil
 - 2. Adjust (3) hex nuts until the feeler gauge feels snug equally around the brake

Troubleshooting – Air Gap

- Adjustment Method 2
 - 1. Tighten the three adjustment nuts equally to establish zero air gap
 - 2. Loosen the adjustment nuts equally ½ turn

Troubleshooting – Brake Disc

- Brake disc is worn or damaged
 - Sliding friction cause carbon based brake disc to wear
 - High cycle rates require more frequent disc replacement
 - Overheating can cause pressure plate to warp

Troubleshooting – Brake Disc

- Check thickness of brake disc
 - 1. Measure the thickness of the brake disc with calipers
 - 2. Replace disc if out of tolerance
 - 3. Reinstall new disc or current disc if within tolerance range

Brake type	Thickness in / [mm]
BE05/BE1/BE2/BE5	.354 / [9]
BE11/BE20/BE30/BE32/BE60/BE62	.394 / [10]
BE120/BE122	.473 / [12]

Conclusion

This presentation provided a basic overview of SEW Brakes and should enable you to achieve the following –

- 1. Describe the purpose of the SEW brake
- 2. Explain the operation of the SEW brake
- 3. Identify the components of an SEW brake
- 4. Apply basic troubleshooting procedures

For more detail information and maintenance of SEW mechanical products please visit our website at –

http://www.seweurodrive.com/s_training/index.php5